🚀 Master the language of AI with our brand new course: "Prompt Engineering for Everyone" Learn more

Offered By: IBM

Accelerating Deep Learning with GPUs

Training complex deep learning models with large datasets takes along time. In this course, you will learn how to use accelerated GPU hardware to overcome the scalability problem in deep learning.

Continue reading

Course

Machine Learning

5.57k+ Enrolled
4.6
(150 Reviews)

At a Glance

Training complex deep learning models with large datasets takes along time. In this course, you will learn how to use accelerated GPU hardware to overcome the scalability problem in deep learning.

About This Course

Training complex deep learning models with large datasets takes along time. In this course, you will learn how to use accelerated GPU hardware to overcome the scalability problem in deep learning.

You can use accelerated hardware such as Google’s Tensor Processing Unit (TPU) or Nvidia GPU to accelerate your convolutional neural network computations time on the Cloud. These chips are specifically designed to support the training of neural networks, as well as the use of trained networks (inference). Accelerated hardware has recently been proven to significantly reduce training time.

But the problem is that your data might be sensitiveand you may not feel comfortable uploading it on a public cloud, preferring to analyze it on-premise. In this case, you need to use an in-house system with GPU support. One solution is to use IBM’s Power Systems with Nvidia GPU and Power AI. The Power AI platform supports popular machine learning libraries and dependencies including Tensorflow, Caffe, Torch, and Theano.

In this course, you'll understand what GPU-based accelerated hardware is and how it can benefit your deep learning scaling needs. You'll also deploy deep learning networks on GPU accelerated hardware for several problems, including the classification of images and videos.

What will I get after passing this course?

  • You will receive a completion certificate.

What will you learn?

  • Explain what GPU is, how it can speed up the computation, and its advantages in comparison with CPUs.
  • Implement deep learning networks on GPUs.
  • Train and deploy deep learning networks for image and video classification as well as for object recognition.

Course Syllabus

  • Module 1 - Quick review of Deep Learning
  • Module 2 - Hardware Accelerated Deep Learning
  • Module 3 - Deep Learning in the Cloud
  • Moduel 4 - Distributed Deep Learning

General Information

  • This course is self-paced.
  • It can be taken at any time.
  • It can be taken as many times as you wish.

Recommended skills prior to taking this course

None

Grading scheme

  • The minimum passing mark for the course is 70%, where the review questions are worth 50% and the final exam is worth 50% of the course mark.
  • You have 1 attempt to take the exam with multiple attempts per question.

Requirements

None.

Estimated Effort

5 Hours

Level

Beginner

Course Code

ML0122ENv3

Released

February 10, 2021

Last Updated

February 11, 2022

Audience

Anyone interested in Deep Learning with GPUs

Course Level

Beginner

Language

English

Learning Path

Deep Learning

Badge Earned

Accelerated Deep Learning with GPU

Tell Your Friends!

Saved this page to your clipboard!

Sign up to our newsletter

Stay connected with the latest industry news and knowledge!